<< вернуться назад   хотите разместить рекламу на сайте?

Главная / Статьи / «Искры жизни» в воздухе и воде

«Искры жизни» в воздухе и воде

22.06.08
 

Как только возгорается пламя, его энергия, выделяющаяся не только в виде тепла, но и в виде света, активирует все новые молекулы кислорода, и пламя уже не угасает. Если же по каким-то причинам пламя затухает, а горючее вещество продолжает тлеть, дополнительная активация кислорода тем или иным способом позволяет пламени вспыхнуть вновь. Часто говорят, что организм человека получает основную энергию для осуществления жизнедеятельности от сжигания кислородом питательных веществ. Казалось бы, это просто красивый оборот речи – в водной среде организма горения вроде бы быть не может. Как учит биохимия, кислород, который мы вдыхаем, окисляет углеводы и жиры совсем по-другому, чем это происходит при горении. Однако недавно выяснилось, что аналогия со свечой гораздо ближе к истине, чем ученые думали раньше, и что активированный кислород в биологическом окислении может играть ту же роль «искр», что и в нашем примере со свечой. И чтобы биологическое окисление, а, значит, и генерация энергии в организме шли максимально эффективно, необходимо, чтобы организм регулярно подпитывался такими «искрами», получая их с воздухом и водой. Поэтому лишь та вода обеспечивает здоровье и долголетие, что содержит активный кислород. Оказалось, что к таким водам относятся те артезианские и родниковые воды, что традиционно считаются целебными. В последние годы появились технологии, которые позволяют повышать содержание активного кислорода и в обычной воде, которая благодаря этому приближается по своим свойствам к целебным природным водам. По одной из наиболее эффективных технологий такого рода, разработанных в России, уже выпускается бутилированная вода с активными формами кислорода. Неактивная вода, по меньшей мере, бесполезна, а если в ее составе содержатся вещества, дезактивирующие кислород - она вредна для здоровья. Это утверждение основано на многочисленных научных фактах и открытиях, которые по ряду причин долго оставались вне поля зрения академической медицины. Но чтобы понять, почему питьевая вода должна содержать активный кислород, обратимся к одному широко известному примеру, доказывающему важность для жизни активного кислорода, поступающего в организм из внешней среды с воздухом.

Как ни удивительно, и у человека, и у животных может наступить удушье, даже если кислорода в воздухе более чем достаточно. Это открытие сделал еще в начале прошлого века выдающийся российский биофизик А.Л. Чижевский. Он помещал мышей или крыс в камеру, в которой было всё, что нужно для жизни. Лишь воздух поступал в камеру через специальные фильтры, которые пропускали все газы, включая кислород, но отсекали ионизированные частицы. И хотя содержание кислорода в воздухе камеры было нормальным – около 20%, уже спустя некоторое время внешний вид животных ухудшался, они ослабевали, отказывались от пищи, а примерно через две недели погибали с признаками хронического кислородного голодания. Если же на находящийся в камере электрод подавали высокое отрицательное напряжение, что приводило к появлению в воздухе отрицательно заряженных ионов (аэроионов), животные чувствовали себя прекрасно. Значит, если воздух лишен отрицательных аэроионов, животное может задохнуться даже при достаточном содержании в нем кислорода.

Содержание отрицательных аэроионов особенно высоко в том воздухе, который мы ощущаем «свежим» – в воздухе лесов, вблизи горных рек, водопадов и фонтанов. В воздухе, который нам кажется «спертым», аэроионы либо отсутствуют, либо представлены положительно заряженными частицами. Отрицательных аэроионов очень мало в запыленном воздухе городов, в помещениях, где много покрытых пластиком поверхностей, вблизи телеэкранов и мониторов компьютеров. Большинство кондиционеров воздуха до последнего времени не оснащали ионизаторами. Поэтому они не только охлаждают воздух, но работают подобно тем фильтрам, что были вставлены Чижевским в клетки для животных в его экспериментах. На основании своего открытия Чижевский изобрел ионизаторы, насыщающие воздух помещений отрицательными аэроионами. Они получили сейчас широкое распространение, поскольку положительный эффект от их применения бесспорен.

Итак, при отсутствии или недостатке в воздухе отрицательных аэроионов человек испытывает хроническое кислородное голодание со всеми вытекающими из этого печальными последствиями для здоровья. Но что представляют собой эти замечательные «отрицательные аэроионы»? Они появляются, когда свободный электрон «прилипает» к молекуле кислорода воздуха. Кислород превращается в отрицательно заряженную частицу, но ее биологические свойства связаны не с ее зарядом, а с тем, что она становится свободным радикалом. Свободные радикалы получаются из молекул при присоединении или отнятии у них одного электрона, т.е. они обладают свободной валентностью и могут намного легче вступать в химические реакции, чем молекулы, из которых произошли. Обычные молекулы кислорода сами по себе почти неактивны, но кислородные радикалы и другие формы активного кислорода (перекись водорода, озон и другие) потому и называются активными формами кислорода, что очень легко окисляют горючие вещества. Без них горение невозможно, даже если молекулярного кислорода и топлива для самого горения достаточно. Вернемся к нашему примеру со свечой. В свече достаточно горючего вещества, она стоит на воздухе, в котором достаточно кислорода, но самопроизвольно пары воска вряд ли загорятся. Для этого необходимо тем или иным способом активировать кислород вблизи фитиля.

Как же совместить тот факт, что без свободных радикалов в воздухе жизнь животных угасает, с широко распространенным в современной медицине взглядом на свободные радикалы как на опасные патогены, так или иначе связанные с развитием разнообразных заболеваний, включая онкологические? Дело в том, что этот взгляд сложился в тот период, когда о важнейших функциях кислородных радикалов и других активных форм кислорода в осуществлении нормальных биохимических и физиологических процессов почти ничего не знали. Лишь в самые последние годы выяснилось, что активные формы кислорода необходимы для регуляции практически всех известных биохимических процессов в организме. К тому же оказалось, что существенная часть вдыхаемого человеком и животными воздуха идет на образование кислородных радикалов и других его активных форм. Но, вот парадокс: как только они возникают, их сразу устраняют многочисленные системы так называемой антиоксидантной защиты. Считается, что основная функция антиоксидантов – защита биологически важных молекул белков, липидов, нуклеиновых кислот от повреждения радикалами для предотвращения развития патологических процессов. Нет ли тут противоречия: кислородные радикалы и другие активные формы кислорода постоянно производятся специальными ферментами во всех органах и тканях организма, участвуют в регуляции нормальных процессов жизнедеятельности, а организм, как считается, для борьбы с ними выстраивает мощную эшелонированную оборону. Но противоречие исчезает, если учесть, что в реакциях, в которых устраняются активные формы кислорода, порождаются кванты энергии, необходимые как для активации новых порций кислорода, так и для обеспечения высокой скорости протекания биохимических процессов. Поэтому, чем больше производится активных форм кислорода и чем эффективнее они сразу же устраняются, тем больше освобождается энергии, необходимой для обеспечения нужд организма.

Первоначально возникшие кислородные радикалы подобны искрам, которые тратят свою энергию на активацию новых молекул кислорода, и при этом сами гаснут. Вспыхнувшее пламя активирует кислород, и горение продолжается. Например, чтобы супероксидные анион-радикалы (таково химическое наименование отрицательных кислородных ионов) выступили в роли таких «искр», они должны устраниться. Они гибнут при спаривании друг с другом, когда один радикал отдает лишний электрон другому. Как радикалы они исчезают, но в этой реакции освобождается энергия, идущая на активацию новых молекул кислорода.

Однако супероксидный радикал – это отрицательно заряженная частица, а одноименные заряды, как известно, отталкиваются. Поэтому чтобы два кислородных радикала вступили в реакцию между собой, они должны потерять заряд. И вот тут вступает в игру вода. Воздух всегда содержит то или иное количество паров воды, а вода способна разделяться на положительно заряженные ионы водорода – протоны (Н+), и отрицательно заряженные гидроксил-ионы (ОН-). Отрицательные ионы кислорода (О2-) легко связываются с микрокапельками воды в воздухе, притягивают к себе протоны, теряя при этом заряд, но не свою химическую активность. Когда один нейтральный кислородный радикал (его формула – О2Н•, где значок «•» обозначает лишний электрон) передает этот электрон другому такому же радикалу вместе с протоном, рождаются возбужденный, т.е. химически активный кислород *О2 (его называют «Синглетный кислород») и перекись водорода, Н2О2. Перекись, как известно, неустойчивое и высоко химически активное вещество. При ее разложении вновь освобождается энергия, способная активировать дополнительные молекулы кислорода, что поддерживает уже запущенный процесс горения.

Итак, оказывается, что вода играет принципиально важную роль в осуществлении процессов горения. Химики давно заметили, что совершенно сухое топливо не горит в присутствии абсолютно сухого кислорода даже при очень высоких температурах. Да и тот факт, что аэроионы Чижевского могут оказывать свое благотворное действие лишь после того, как окажутся в водной среде организма, уже указывает на важную роль воды в биоэнергетических процессах. Но обыденный опыт, говорящий нам, что вода гасит огонь, отвергал даже мысль о том, что без воды горения не бывает. Так, может быть, помимо множества других важных функций, которую играет вода в процессах жизнедеятельности, ее ранее неизвестная роль в процессах, обеспечивающих организм так необходимой ему энергией горения, является одной из самых существенных? Биологическая роль воды.

Вода составляет около 70% от массы тела взрослого человека, а в наиболее важных для жизнедеятельности органах – в мозгу и в крови ее содержание превышает 85%. Если же оценить ее содержание в любом живом организме с точки зрения химии, организм – это, по существу, вода. На ее долю приходится более 99% от всех остальных молекул, входящих в состав организма. Но до самого последнего времени академическая биология и медицина занималась изучением тех субстанций, которые составляют доли процентов, часто ничтожно малые доли процентов от того, что является химической основой организма. Еще в 60-е годы Нобелевский лауреат, крупнейший авторитет в области биоэнергетики Альберт Сцент-Дьерди воскликнул: «Биология забыла о воде или вообще не думала о ней». Основную субстанцию организма – воду принято рассматривать как почти нейтральный растворитель, в котором протекают биохимические реакции, как субстанцию, которая разносит по телу различные вещества. Считалось, что воды в организме более, чем достаточно, а та, что теряется с потом, мочой и выдыхаемым воздухом легко компенсируется любыми напитками, что содержат воду. Только в самые последние годы стало приходить понимание того, что не существует воды, как таковой, что она представлена множеством различных форм и это ее разнообразие позволяет ей не только поддерживать жизнь, но, по существу, быть источником жизни.

В последние годы начались исследования структурных особенностей воды, содержащейся в как живых клетках, так и во внеклеточной среде. Обнаружилось, что вода в живом организме высоко организована, т.е. значительная часть воды связана с биологическими молекулами, образуя многослойные структуры. С другой стороны, структурная организация воды динамична – в зависимости от того, какие процессы протекают в клетке, одни структуры, состоящие из многих молекул воды, могут распадаться, а из освободившихся молекул формируются новые. Структурная организация воды зависит от всех содержащихся в ней «твердых» частиц – биополимеров, малых органических молекул - сахаров, липидов, гормонов, витаминов и т.д., от ионов калия, натрия, кальция, магния, хлора, карбоната, фосфатов и других. Каждая «твердая» молекула в клетке и во внеклеточной среде окружена многослойным водным чехлом. Хотя отдельные молекулы воды, из которых построены такие оболочки, могут с той или иной скоростью замещаться на другие, она, как целое меняет свою форму гораздо медленнее. На первый взгляд это очень странно, но достаточно представить себе, например, водоворот. Он обладает вполне устойчивой структурой и может существовать довольно долго, хотя одни воды в него входят, ни на миг в нем не останавливаются и из него выходят. Водоворот – это динамическая структура, и он устойчив, только если вода протекает сквозь него достаточно быстро. Поэтому когда мы говорим о структурированности воды, то в ней помимо более или менее устойчивых структур наподобие льдинок, в которых молекулы воды достаточно долго сохраняют свое положение, могут существовать и динамические структуры наподобие микроскопических вихрей. Высказывается мнение, что молекулярные взаимодействия в клетках и взаимодействия клеток друг с другом осуществляются не столько за счет прямых контактов «твердых» молекул друг с другом, сколько благодаря влиянию друг на друга водяных оболочек, окружающих те или иные молекулы или микровихрей, порождаемых теми или иными процессами. Хотя эти новые представления вступают в резкое противоречие со взглядами, сложившимися в классической биохимии и физиологии и основанной на них академической медициной, число подтверждающих их научных исследований быстро растет. Итак, вода играет не менее важную роль в динамической структурной организации живого вещества – клеток и окружающих их соединительно-тканных элементов, что и биологические молекулы, которые в ней обитают. Но она еще и непосредственно участвует в обмене веществ, который, собственно, и лежит в основе всех процессов жизнедеятельности. Обмен веществ – это непрерывная замена одних молекул на другие, т.е. распад одних и синтез тех же или других молекул, нужных организму в данный момент и в данном его месте. Осуществление обмена веществ требует непрерывного притока энергии, а в ее продукции в организме вода, как мы увидим далее, также играет ключевую роль. Участие воды в основных биохимических реакциях известно давно, но до последнего времени на это не обращали слишком большого внимания, считая, что воды в организме всегда хватает для нормального их протекания. Если же приглядеться внимательнее, то станет ясно, что для одних процессов нужна как бы одна вода, для других – совсем другая, для третьих еще какая-то, и т.д. Тогда возможна ситуация, при которой организм может страдать от жажды при, казалось бы, избытке в нем воды из-за дефицита той, что нужна ему в данный момент. Например, для получения из пищи питательных веществ и строительных материалов основные компоненты пищи – белки и углеводы должны быть раздроблены на мелкие фрагменты. Это происходит за счет гидролиза – расщепления полимеров водой. Но чтобы гидролиз прошел, должна разделиться на две части и сама молекула воды. Значит, эффективность расщепления пищевых полимерных молекул зависит не только от их состава и структуры, не только от ферментов, которые их расщепляют, но и от того, достаточно ли там, где идет гидролиз, именно той воды, которая обладает необходимой для осуществления гидролиза структурной организацией. Гидролиз протекает и во внутренней среде организма, где одни полимеры непрерывно замещаются другими, где постоянно перестраиваются внутриклеточные и внеклеточные структуры. Путем гидролиза устраняются старые, отработавшие своё биополимеры или те, что в данный момент не нужны.

На место разобранных на мелкие кусочки биополимеров должны поступить новые. Они собираются в клетке из молекулярных кирпичиков, которые в нужной последовательности стыкуются друг к другу. Когда к растущей цепи биополимера пришивается новое звено, освобождается одна молекула воды. Эта химическая реакция носит название поликонденсации, и она, по существу, противоположна гидролизу. До последнего времени ученые не слишком задумывались над тем, как в клетке, которую они рассматривали как не слишком концентрированный раствор (вспомним, что более 99% всех молекул клетки – это молекулы воды), вообще может идти такой процесс. Ведь освободившуюся при соединении двух кирпичиков молекулу воды, казалось бы, не так уж просто «вытолкнуть» в окружающую воду. Но если большая часть молекул воды там, где идет синтез полимеров, не свободна, а связана: входит, например, в состав тех или иных оболочек, то возникшей при поликонденсации молекуле воды гораздо проще покинуть место своего рождения. Естественно, там, где идет синтез, свойства водной среды должны резко отличаться от воды в местах гидролиза. В том месте, где идет гидролиз, она должна быть более свободна, чтобы обеспечить для гидролиза достаточное количество свободных молекул. До сих пор эти соображения, как правило, не принимались во внимание при рассмотрении обмена веществ.

Обеспечение строительного комплекса энергией также требует непосредственного участия воды. Известно, что существенная часть энергетических процессов в клетках любого организма обеспечивается молекулами АТФ – так сказать, универсальной энергетической валютой. Молекулы АТФ несут в себе легко доступную энергию, и, расщепляясь, они отдают ее в нужном месте в нужное время. Для осуществления любого акта жизнедеятельности, например, мышечного сокращения, молекула АТФ должна распасться на два фрагмента – молекулу АДФ и остаток фосфорной кислоты, а этот распад – суть гидролиз. Значит, в действительности, энергия освобождается при сопряженном процессе распада молекулы АТФ и молекулы воды и если последнее затруднено, то реализовать энергию молекулы АТФ становится труднее. А чтобы запасти энергию в молекуле АТФ, ее необходимо синтезировать, соединив молекулу АДФ с остатком фосфорной кислоты. И при этом молекула воды освобождается. Нетрудно догадаться, что в том месте, где АТФ синтезируется и в том месте, где она распадается, вода должна быть по-разному связаной.

Другой известный источник энергии – это разность электрических потенциалов между клеткой и средой за счет неравномерного распределения между ними ионов калия и натрия. Концентрация калия в живой клетке много выше, чем в среде, а натрия гораздо больше в среде, чем в клетке. Особенно велика эта разница в нервных клетках, где она достигает многих десятков милливольт. Проведение нервного импульса – это электрический разряд, при котором ионы калия выбрасываются из клетки, а ионы натрия входят в нее. Затем клетка направляет энергию обмена веществ на восстановление потенциала до следующего его разряда. На роль воды в этом процессе внимания почти не обращают, хотя перераспределение ионов калия и натрия сопровождается как перераспределением воды между клеткой и средой, так и существенным изменением ее свойств. Поскольку каждый ион окружен несколькими молекулами воды, то воды перераспределяется много больше, чем самих ионов. А, значит, и здесь состояние воды как в клетках, так и во внеклеточной среде должно определять эффективность проведения нервных импульсов, т.е. функционирование нервной системы. То же можно сказать и о других возбудимых клетках, например, мышечных, и, в первую очередь, о клетках сердечной мышцы. При сокращении мышечных клеток ионы также перераспределяются как внутри клетки между разными ее частями, так и между клеткой и средой вместе со связанной этими ионами водой. В невозбудимых клетках изменения разности электрических потенциалов между клеткой и средой также играет определенную роль в выполнении ими своих функций. Следовательно, состояние воды существенно для электрической активности всех клеток живого организма. Итак, вода играет определяющую роль даже в хорошо известных биоэнергетических процессах, хотя, к сожалению, до последнего времени эта ее роль оставалась вне поля зрения большинства биологов и медиков. А та роль, которую играет вода в процессах горения, о которых говорилось выше, вообще практически никем не обсуждается. Напомним, что горение отличается от тления, тем, что в последнем случае энергия освобождается в форме тепла, а при горении, когда горючие вещества напрямую окисляются активными формами кислорода, освобождаются большие порции энергии, которые превращаются в видимый свет. Как это ни удивительно, оказалось, таким горючим веществом может быть сама вода.

На рубеже нового тысячелетия сразу в нескольких лабораториях мира было обнаружено, что в обычных условиях: при нормальных температурах и давлениях, вода может непосредственно окисляться активным кислородом с образованием других активных его форм. Одна из них – это хорошо известная перекись водорода, Н2О2, которую можно изобразить как Н-О-О-Н. Но еще в конце 19 века российский химик А.Н. Бах (позднее – академик АН СССР, основатель академического Института биохимии, названного его именем), предсказал, что возможно существование полиокисей водорода типа Н2О3 (Н-О-О-О-Н) и Н2О4 (Н-О-О-О-О-Н), которые должны обладать еще более высокой «запальной» активностью, чем перекись водорода. Согласно выдвинутой им в 1897 г. теории, которую он продолжал отстаивать еще почти пол-века, именно с активации кислорода, в частности, при образовании перекисных соединений, начинаются любые окислительные процессы в организме, живущем за счет энергии, получаемой от дыхания.

Хотя перекисная теория Баха основывалась на солидных научных фактах, она осталась на периферии биоэнергетики. И только в 2000 году американские ученые установили, что воду может окислять активированный кислород (синглетный кислород) в результате чего образуется перекись водорода. Промежуточными продуктами при этом являются Н2О3 и Н2О4. При определенных условиях они могут даже накапливаться в воде, превращая ее в источник ценной энергии.

Американские ученые доказали, что окисление воды кислородом, а, по существу, ее горение постоянно идет в крови человека и животных. Давно известно, что циркулирующие в крови защитные белки – антитела – связываются с чужеродными для организма молекулами для их последующего устранения. Открытие заключалось в том, что антитела способствуют горению воды. Они так организуют воду в пространстве, что она катализирует собственное окисление синглетным кислородом до перекиси водорода. Это свойство антител, очевидно, способствует эффективному выполнению ими защитных функций. Поскольку активные формы кислорода – сильные дезинфицирующие средства, значит, вирусам и бактериям наносится ущерб уже в момент связывания с ними антител, потому что вода буквально «горит» вокруг них.

Антитела защищают организм и от его собственных молекул, если те не отвечают установленному «стандарту». Как мы отмечали выше, в норме старые, отработавшие свое молекулы устраняются путем гидролиза. Другой путь их удаления – это их сжигание активными формами кислорода. При гидролизе из высокополимерных «отходов» обмена веществ получаются кирпичики, которые можно использовать для построения новых биополимеров и других нужных организму в данный момент биомолекул. При сжигании отходов освобождается заключенная в них энергия. Эффективность обоих процессов требует помимо прочих важных факторов (наличия соответствующих ферментов, достаточного поступления активного кислорода для сжигания «отходов») особой структурной организации воды. Если же оптимальные условия удаления отходов не обеспечены, в органах и тканях накапливаются «нестандартные» молекулы, по существу, токсины, а в крайних случаях наступает опухолевое перерождение клеток. И тогда к борьбе с этими «внутренними врагами» подключаются и клетки иммунной системы, и антитела, которые способны самостоятельно структурировать воду, и «сжигать» противника с помощью активных форм кислорода. Но ведь основное предназначение иммунной системы – это защита организма от внешних «врагов», а борьба с «внутренним врагом» – это дополнительная и не совсем естественная на нее нагрузка. Если война с «криминалом» продолжается слишком долго, возможно развитие хронических воспалительных состояний или других нарушений иммунитета, например аутоиммунных заболеваний, когда антитела начинают враждовать не только с нестандартыми молекулами, но и с вполне нормально функционирующими молекулами организма, что приводит к его саморазрушению.

Итак, вода – центральный персонаж во всех процессах, обеспечивающих жизнь любого организма. Нарушение ее нормальной структурной организации, точнее соотношения различных структурных организаций и динамических характеристик может служить одной из основных причин возникновения самых разнообразных заболеваний. Значит, предотвращение болезней или излечение уже заболевшего требует не менее внимательного отношения к водной основе организма, чем к состоянию его «твердых» молекул, ибо нормальная работа всех клеток, органов и тканей возможна только тогда, когда вода и «твердые» включения в ней функционируют согласованно.